

Fixed-point logics

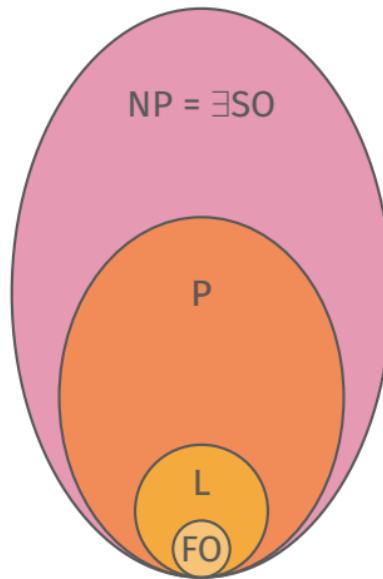
Benedikt Pago ¹

ESSLLI 2025, Bochum

¹University of Cambridge

UNIVERSITY OF
CAMBRIDGE

Department of Computer
Science and Technology



Shortcoming of first-order logic

First-order logic is **local**:

Theorem

There is no FO-sentence that expresses whether a graph is connected.

Solution: Extend FO with an *iteration mechanism*.

Fixed-point logic (IFP) extends the syntax of FO with the following operator:

$$[\mathbf{ifp} \ R\bar{x}. \ \varphi(\bar{x}; R)](\bar{y}).$$

It holds $\mathfrak{A} \models [\mathbf{ifp} \ R\bar{x}. \ \varphi(\bar{x}; R)](\bar{y})$ iff \bar{y} is in the *least-fixed point* defined by φ :

- $R_0 = \emptyset$.
- $R_1 = R_0 \cup \{\bar{a} \in A^{\text{ar}(R)} \mid \mathfrak{A} \models \varphi(\bar{a}; \emptyset)\}$.
- $R_2 = R_1 \cup \{\bar{a} \in A^{\text{ar}(R)} \mid \mathfrak{A} \models \varphi(\bar{a}; R_1)\}$.
- ...
- $R_{\text{fix}} = R_{\text{fix}+1}$.

Theorem

For every sentence $\psi \in \text{IFP}$, its model-checking problem \mathcal{MC}_ψ is in PTIME.

Proof.

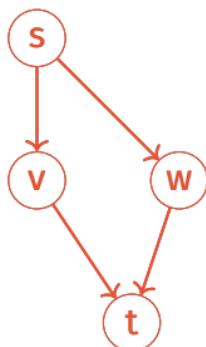
The evaluation of $[\text{ifp } Rx. \varphi(x; R)](y)$ in \mathfrak{A} takes at most $|A|^r$ steps, where r is the arity of R .

Examples of fixed-point computations

Reachability:

Input: A directed graph $G = (V, E, s, t)$.

Question: Is there a path from s to t ?



$$\varphi := [\mathbf{ifp} \ Rx. \underbrace{(x = s \vee \exists y(Ry \wedge E yx))}_{\text{"Add to } R \text{ each vertex } x \text{ that is } s \text{ or has a predecessor in } R"}] (t).$$

"Add to R each vertex x that is s or has a predecessor in R "

Fixed-point computation:

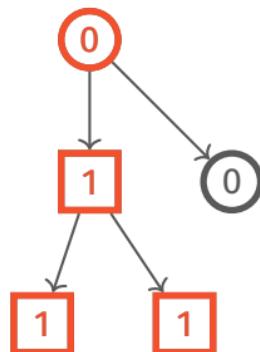
- $R_0 = \emptyset$.
- $R_1 = \{s\}$.
- $R_2 = \{s, v, w\}$.
- $R_3 = \{s, v, w, t\}$.

Examples of fixed-point computations

Game:

Input: A 2-player game graph $G = (V, V_0, V_1, E)$.

Question: Compute the set of winning positions for Player 0.



$$\varphi(x) := [\mathbf{ifp} \, Rx. \, (V_0 x \wedge \exists y (Exy \wedge R y)) \vee (V_1 x \wedge \forall y (Exy \rightarrow R y)).] (x).$$

“A vertex in V_0 is winning if it has a winning successor.
A vertex in V_1 is winning if all its successors are winning.”

Does IFP capture PTIME?

Theorem (Immerman-Vardi, 1986 & 1982)

IFP captures PTIME on the class of all *linearly ordered* finite structures.

Theorem

IFP *fails to capture* PTIME on the class of all finite structures.

Proof of the Immerman-Vardi Theorem

Theorem (Immerman-Vardi, 1986 & 1982)

IFP captures PTIME on the class of all *linearly ordered* finite structures.

Proof.

Translate any polynomial-time TM M into an IFP-sentence, similar to Fagin's theorem:

- Use the order to define a string encoding of the input structure.
- Since M uses only polynomial time and space, there is a $k \in \mathbb{N}$ such that a k -ary fixed-point relation can be used to simulate the run of M .

Theorem

IFP *fails to capture* PTIME on the class of all finite structures.

Proof structure:

1. Embed IFP into **infinitary FO**.
2. Define a *pebble game* that characterises indistinguishability in infinitary FO.
3. Use this to show that IFP cannot define whether a finite structure has EVEN size (which is clearly in PTIME).

For $k \in \mathbb{N}$, denote by $\mathcal{L}_{\infty\omega}^k$ the **k -variable fragment of infinitary FO**.

It extends k -variable FO with the following formula formation rules:

- If Φ is an (infinite) set of $\mathcal{L}_{\infty\omega}^k$ -formulas, then $\bigvee \Phi$ is an $\mathcal{L}_{\infty\omega}^k$ -formula.
- If Φ is an (infinite) set of $\mathcal{L}_{\infty\omega}^k$ -formulas, then $\bigwedge \Phi$ is an $\mathcal{L}_{\infty\omega}^k$ -formula.

$$\mathcal{L}_{\infty\omega}^{\omega} = \bigcup_{k \in \mathbb{N}} \mathcal{L}_{\infty\omega}^k.$$

Theorem

For every sentence $\psi \in \text{IFP}$ there exists a $k \in \mathbb{N}$ and a $\varphi \in \mathcal{L}_{\infty\omega}^k$ such that ψ and φ are equivalent on all finite structures.

Proof.

Let k be the number of variables in $\psi \in \text{IFP}$.

- For any finite structure, we have $\mathfrak{A} \models [\mathbf{ifp} R\bar{x}. \varphi(\bar{x}; R)](\bar{a})$ iff there exists $n \in \mathbb{N}$ such that $\bar{a} \in R^n$, which is the n -th iteration stage.
- For each $n \in \mathbb{N}$, there is a formula $\varphi^n(\bar{x})$ that defines R^n in every finite structure.
- $[\mathbf{ifp} R\bar{x}. \varphi(\bar{x}; R)](\bar{a}) \equiv \bigvee_{n \in \mathbb{N}} \varphi^n(\bar{a})$.

Definition

Let $\mathfrak{A}, \mathfrak{B}$ two structures, $k \in \mathbb{N}$ the number of pebbles.

The **position** after any round is $(\bar{a} \in A^\ell, \bar{b} \in B^\ell)$ with $\ell \leq k$. In each round,

- **Spoiler** either removes a pebble-pair (a_i, b_i) that is currently on the board, or places an unused pebble on A or B .
- **Duplicator:** If Spoiler has placed a pebble, then Duplicator places the corresponding pebble on the other structure.
- If $\bar{a} \rightarrow \bar{b}$ does *not* define a **local isomorphism** $\mathfrak{A}[\bar{a}] \rightarrow \mathfrak{B}[\bar{b}]$, then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem

Duplicator has a winning strategy in the k -pebble game on $(\mathfrak{A}, \mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} agree on all sentences of $\mathcal{L}_{\infty\omega}^k$.

Theorem

IFP cannot express the *EVEN*-query and hence does not capture PTIME.

Proof.

- Suppose for a contradiction that there is a sentence $\psi \in \text{IFP}$ that expresses whether a finite structure has even cardinality.
- There is a $k \in \mathbb{N}$ and an equivalent sentence $\varphi \in \mathcal{L}_{\infty\omega}^k$.
- Duplicator wins the k -pebble game on the structures $(\{1, \dots, k\}, \{1, \dots, k+1\})$ with empty vocabulary.
- Thus, they are not distinguished by φ and hence not by ψ . But one of them is odd, the other even.

Summary

Via **model-comparison** games, we have shown:

$$\text{FO} \not\leq \text{IFP} \not\leq \text{PTIME}.$$

Alternative argument: 0-1 Laws.

Definition

A logic \mathcal{L} is said to have a **0-1-law** if for every relational vocabulary τ , and every sentence $\psi \in \mathcal{L}[\tau]$,

$$\lim_{n \rightarrow \infty} P(\mathfrak{A}_n \models \psi) \in \{0, 1\},$$

where $P(\mathfrak{A}_n \models \psi)$ denotes the probability that an n -element τ -structure whose *relations* are chosen uniformly at *random* satisfies ψ .

Theorem (Kolaitis, Vardi, 1992)

The logic $\mathcal{L}_{\infty\omega}^\omega$ has a 0-1 law.

⇒ EVEN is not definable in $\mathcal{L}_{\infty\omega}^\omega$ and hence not in IFP.

Constraint Satisfaction Problems

Let \mathfrak{B} be a finite relational τ -structure, called **template**. Then $\text{CSP}(\mathfrak{B})$ is the following problem.

CSP(\mathfrak{B}):

Input: A finite τ -structure \mathfrak{A} .

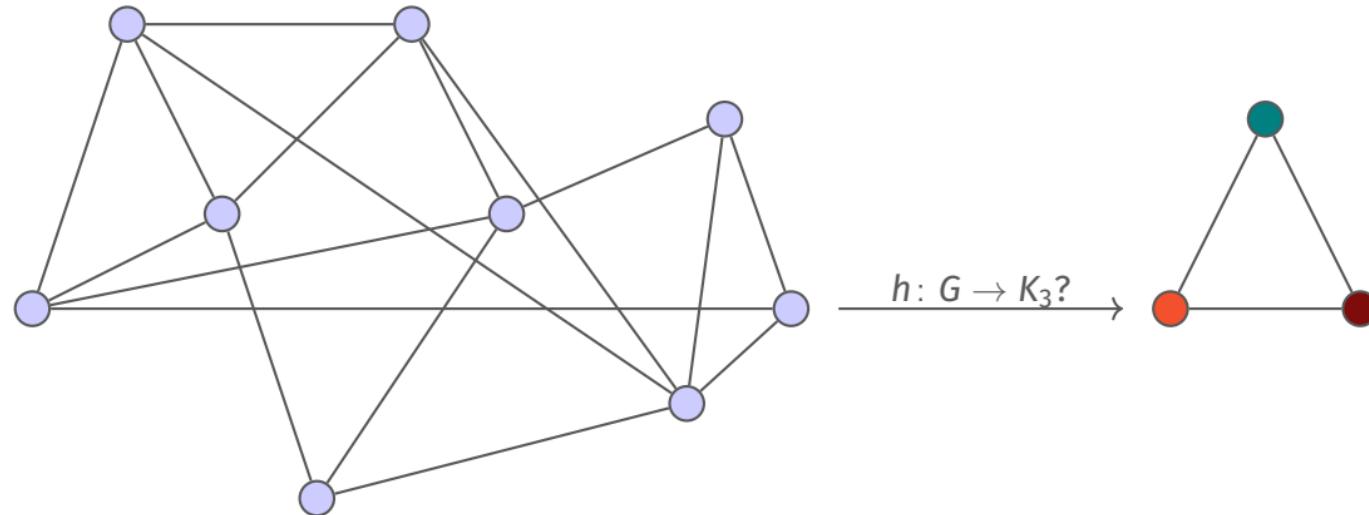
Question: Is there a homomorphism $h: \mathfrak{A} \rightarrow \mathfrak{B}$?

A *homomorphism* is a map h such that whenever $\bar{a} \in R^{\mathfrak{A}}$, then $h(\bar{a}) \in R^{\mathfrak{B}}$.

Examples:

- Systems of linear equations over finite fields
- Graph k -colourability
- Boolean satisfiability

Example: A graph G is 3-colourable if and only if it admits a homomorphism into K_3 .



Theorem (Bulatov-Zhuk, 2017)

Let \mathfrak{B} be a finite relational structure. Then $\text{CSP}(\mathfrak{B})$ is either in PTIME or NP-complete.

Theorem (Barto-Kozik and Atserias-Bulatov-Dawar)

Let \mathfrak{B} be a finite relational structure. Then $\text{CSP}(\mathfrak{B})$ is solvable in IFP if and only if it is solvable by the *k-consistency algorithm*, for a constant $k \in \mathbb{N}$.

Note: There are CSPs in PTIME which are not in IFP.

k -consistency for $\text{CSP}(\mathcal{B})$:

- 1: **Input:** An instance \mathfrak{A} .
- 2: **Output:** Is there a homomorphism $\mathfrak{A} \rightarrow \mathcal{B}$? (answer can be wrong)
- 3: For every $X \subseteq A$ with $|A| \leq k$, initialise $\mathcal{H}(X) := \{h: \mathfrak{A}[X] \rightarrow \mathcal{B} \mid h \text{ a homomorphism}\}$.
- 4: **while** \mathcal{H} keeps changing **do**
- 5: For **every** $X \subset Y$, if there is a $h \in \mathcal{H}(X)$ that does not extend to a $h' \in \mathcal{H}(Y)$, remove h from $\mathcal{H}(X)$.
- 6: For **every** $X \subset Y$, if there is a $h \in \mathcal{H}(Y)$ such that $h|_X \notin \mathcal{H}(X)$, remove h from $\mathcal{H}(Y)$.
- 7: **end while**
- 8: If there is an X such that $\mathcal{H}(X) = \emptyset$, **return** UNSAT.
- 9: Else, **return** SAT.

The local consistency method

Theorem

For every template \mathfrak{B} and every $k \in \mathbb{N}$, there is a sentence $\psi_{k,\mathfrak{B}} \in \text{IFP}$ such that for all instances \mathfrak{A} ,

$$\mathfrak{A} \models \psi_{k,\mathfrak{B}} \iff k\text{-consistency accepts } \mathfrak{A}.$$

Remark: $\psi_{k,\mathfrak{B}}$ can be taken to be in the existential fragment of IFP, also called DATALOG.

Fixed-point logic with counting

Recall: IFP cannot define whether a structure has even cardinality.

Solution: Add a counting mechanism to the logic.

Definition of FPC

Fixed-point logic with counting (FPC) is the extension of IFP with *counting terms*.

For a finite structure \mathfrak{A} , let \mathfrak{A}^* denote the **2-sorted structure**

$$\mathfrak{A}^* := \mathfrak{A} \uplus (\{0, \dots, |A|\}; <, 0, e),$$

where e is a constant with $e = |A|$. FPC[τ]-formulas use:

- a 2-sorted vocabulary $\tau \uplus \{<, 0, e\}$,
- 2-sorted variables x, y, z, \dots , and λ, μ, ν, \dots
- **counting terms:** If $\varphi(x)$ is a formula, then $\#_x[\varphi]$ is a term in the numerical sort.

Semantics: $\llbracket \#_x[\varphi] \rrbracket^{\mathfrak{A}} = t \in \{0, \dots, |A|\}$, where $t = |\{a \in A \mid \mathfrak{A} \models \varphi(a)\}|$.

Examples for expressivity of counting terms

Example

Regularity of undirected graphs can be expressed (i.e. every node has the same degree):

$$\forall x \forall y (\#_z [Exz] = \#_z [Eyz]).$$

Example

Isomorphism of equivalence relations E_1, E_2 :

$$\forall \mu (\#_x [\#_y [E_1 xy] = \mu] = \#_x [\#_y [E_2 xy] = \mu]).$$

“For every equivalence-class-size μ , equally many elements are in a class of size μ in E_1 and in E_2 .”

Complexity hierarchy

$\text{FO} \leq \text{IFP} \leq \text{FPC} \leq \text{PTIME}$.

FPC can express EVEN

shown later

The power of FPC

- FPC can solve linear-algebraic problems over \mathbb{Q} [Holm, 2010].
- FPC can solve the optimization problem for linear programs over \mathbb{Q} [Anderson, Dawar, Holm, 2013].
- **Consequence:** FPC can define the size of a maximum matching in a graph.
- FPC captures PTIME on any proper minor-closed graph class [Grohe, 2014].

Definition

A **canonization** for a class \mathcal{K} of structures is a function f that maps $\mathfrak{A} \in \mathcal{K}$ to an **ordered copy** $f(\mathfrak{A}) = (\mathfrak{A}, <)$ such that for all $\mathfrak{A}, \mathfrak{B} \in \mathcal{K}$,

$$f(\mathfrak{A}) = f(\mathfrak{B}) \iff \mathfrak{A} \cong \mathfrak{B}.$$

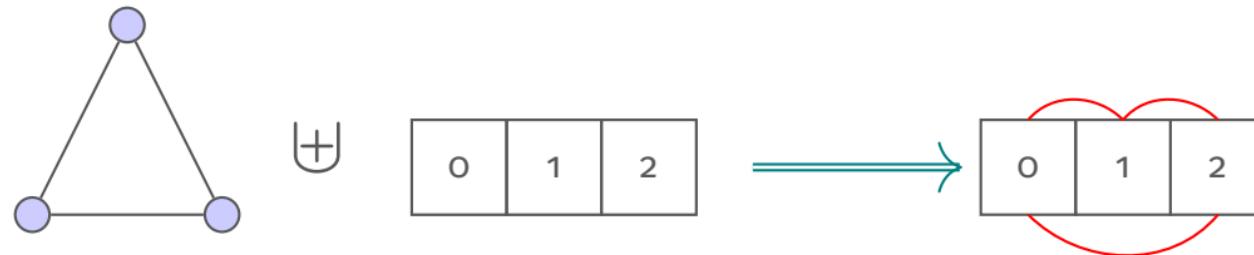
If f can be realized by an \mathcal{L} -interpretation, for a logic \mathcal{L} , then the canonization is \mathcal{L} -definable.

Theorem

If \mathcal{L} is a logic at least as strong as IFP, then if a class \mathcal{K} of structures admits \mathcal{L} -definable canonization, \mathcal{L} captures PTIME on \mathcal{K} .

Canonization in FPC

In FPC, structures come with a linearly ordered number sort, in which we may define the canon.



Canonization in FPC

Example: Canonizing directed trees in FPC.

- **Input:** A 2-sorted tree $\mathcal{T}^* = (V, E) \uplus (\{0, \dots, |V|\}, <, 0, e)$.
- Use the fixed-point operator to define a ternary relation $F \subseteq V \times \{1, \dots, |V|\}^2$ such that for every $v \in V$, $F_v := \{(i, j) \mid (v, i, j) \in F\}$ is the edge relation of an ordered copy of the subtree \mathcal{T}_v rooted at v .
- **Inductive step:** Compute F_v assuming F_{w_1}, \dots, F_{w_m} have been computed for the children of v .
- It suffices to *define an order* on $\{w_1, \dots, w_m\}$.
- F_{w_i} is an ordered copy of the subtree \mathcal{T}_{w_i} , so $\text{code}(\mathcal{T}_{w_i}, <) \in \{0, 1\}^*$ can be computed, and $\{w_1, \dots, w_m\}$ can be ordered according to $\text{code}(\mathcal{T}_{w_i}, <) \in \{0, 1\}^*$.

Just as IFP can be seen as a fragment of $\mathcal{L}_{\infty\omega}^\omega$, FPC is a fragment of $\mathcal{C}_{\infty\omega}^\omega$.

For every $k \in \mathbb{N}$, $\mathcal{C}_{\infty\omega}^k$ is the extension of $\mathcal{L}_{\infty\omega}^k$ with counting quantifiers $\exists^{\geq m} x$ for all $m \in \mathbb{N}$.

Theorem (Grädel and Otto, 1993)

For every sentence $\psi \in \text{FPC}$, there exists a $k \in \mathbb{N}$ and a $\varphi \in \mathcal{C}_{\infty\omega}^k$ such that ψ and φ are equivalent on all finite structures.

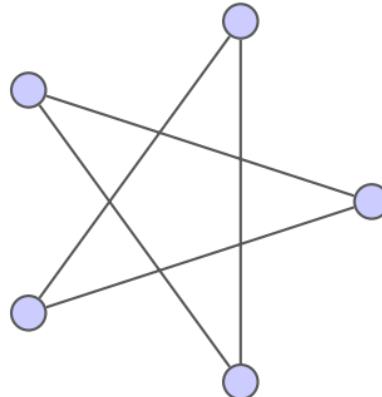
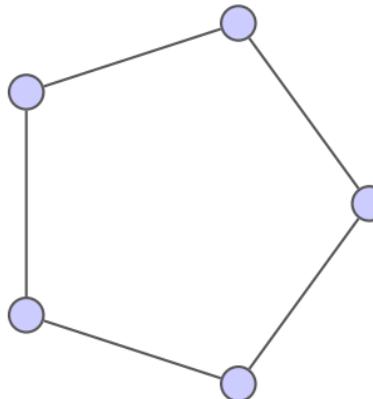
Graph Isomorphism

The Graph Isomorphism Problem

Graph Isomorphism:

Input: Two graphs G, H .

Question: Are G and H isomorphic?



Theorem

Let \mathcal{K} be a class of graphs. Then the following are equivalent.

1. The isomorphism problem for graphs in \mathcal{K} can be solved in FPC.
2. There is a $k \in \mathbb{N}$ such that for all non-isomorphic $G, H \in \mathcal{K}$, $G \not\equiv_{\mathcal{C}^k} H$.
3. The $(k - 1)$ -dimensional **Weisfeiler-Leman algorithm** solves the isomorphism problem for graphs in \mathcal{K} .

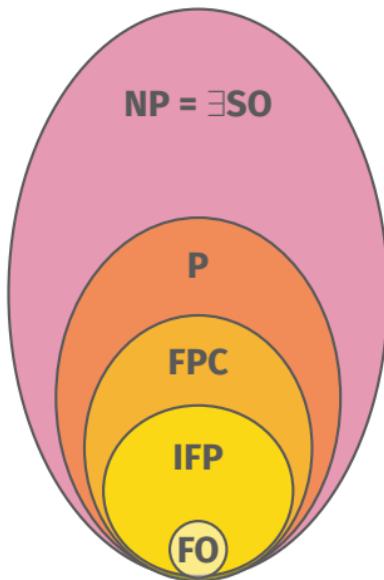
The Weisfeiler-Leman algorithm

1-dimensional Weisfeiler-Leman:

- 1: **Input:** A graph G .
- 2: **Output:** A **colouring** of the vertices according to \mathcal{C}^2 -types.
- 3: Initialise every vertex $v \in V(G)$ with the same colour $c(v)$.
- 4: **while** colouring keeps changing **do**
- 5: For each $v \in V$, set $c(v) := \{\{c(w) \mid w \in E(v)\}\}$.
- 6: **end while**

The Weisfeiler-Leman algorithm

- Generally, *k -dimensional Weisfeiler-Leman* computes a colouring of the k -tuples in a graph G according to their \mathcal{C}^{k+1} -types in G .
- We say that k -WL **distinguishes** G and H if the computed colourings are different.
- Intuitively, every FPC-sentence can at most distinguish all graphs that can also be distinguished by k -WL for some fixed $k \in \mathbb{N}$.



On ordered structures:

- IFP captures PTIME.
- Deterministic transitive closure logic captures LOGSPACE.
- Transitive closure logic captures NL.

References i

- [1] Matthew Anderson, Anuj Dawar, and Bjarki Holm. **Maximum Matching and Linear Programming in Fixed-Point Logic with Counting**. 2013. arXiv: 1304.6870 [cs.LO].
<https://arxiv.org/abs/1304.6870>.
- [2] Albert Atserias, Andrei Bulatov, and Anuj Dawar. **“Affine systems of equations and counting infinitary logic”**. In: Theoretical Computer Science 410.18 (2009), pp. 1666–1683.
- [3] Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. **“On the Power of k -Consistency”**. In: Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings. Ed. by Lars Arge et al. 4596. Lecture Notes in Computer Science. Springer, 2007, pp. 279–290. 10.1007/978-3-540-73420-8_26.
- [4] Albert Atserias and Joanna Ochremiak. **“Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem”**. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 2018, pp. 66–75.

References ii

- [5] Libor Barto and Marcin Kozik. **“Constraint Satisfaction Problems Solvable by Local Consistency Methods”**. In: J. ACM 61.1 (2014), 3:1–3:19. 10.1145/2556646. <https://doi.org/10.1145/2556646>.
- [6] A. Bulatov. **“A Dichotomy Theorem for Nonuniform CSPs”**. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS. 2017, pp. 319–330. 10.1109/FOCS.2017.37.
- [7] Anuj Dawar. **“The nature and power of fixed-point logic with counting”**. In: ACM SIGLOG News 2.1 (2015), pp. 8–21.
- [8] Erich Grädel and Martin Otto. **“Inductive Definability with Counting on Finite Structures”**. In: Computer Science Logic, 6th Workshop, CSL '92, San Miniato, Italy, September 28 - October 2, 1992, Selected Papers. Ed. by Egon Börger et al. 702. Lecture Notes in Computer Science. Springer, 1992, pp. 231–247. 10.1007/3-540-56992-8_15. https://doi.org/10.1007/3-540-56992-8%5C_15.

References iii

- [9] Martin Grohe. **Descriptive Complexity, Canonisation, and Definable Graph Structure Theory**. 47. Lecture Notes in Logic. Cambridge University Press, 2017. ISBN: 9781139028868.
10.1017/9781139028868. <https://doi.org/10.1017/9781139028868>.
- [10] Bjarki Holm. **“Descriptive complexity of linear algebra”**. PhD thesis. University of Cambridge, UK, 2011. <https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609435>.
- [11] Neil Immerman. **“Relational queries computable in polynomial time”**. In: Proceedings of the fourteenth annual ACM symposium on Theory of computing. 1982, pp. 147–152.
- [12] Sandra Kiefer. **“The Weisfeiler-Leman algorithm: an exploration of its power”**. In: ACM SIGLOG News 7.3 (2020), pp. 5–27.
- [13] Phokion G. Kolaitis and Moshe Y. Vardi. **“Infinitary Logics and 0-1 Laws”**. In: Inf. Comput. 98.2 (1992), pp. 258–294. 10.1016/0890-5401(92)90021-7. [https://doi.org/10.1016/0890-5401\(92\)90021-7](https://doi.org/10.1016/0890-5401(92)90021-7).
- [14] Martin Otto. **Bounded Variable Logics and Counting**. 9. Lecture Notes in Logic. Springer, 1997.

- [15] Moshe Vardi. “**The complexity of relational query languages**”. In: Proceedings of the fourteenth annual ACM symposium on Theory of computing. 1982, pp. 137–146.
- [16] D. Zhuk. “**A Proof of the CSP Dichotomy Conjecture**”. In: J. ACM 67 (2020), 30:1–30:78. [10.1145/3402029](https://doi.org/10.1145/3402029).