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Shortcoming of first-order logic

First-order logic is local:

Theorem
There is no FO-sentence that expresses whether a graph is connected.

Solution: Extend FO with an iteration mechanism.
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Inflationary fixed-point logic

Fixed-point logic (IFP) extends the syntax of FO with the following operator:

[ifp RX. ©(X; R)](¥).
It holds 2 [= [ifp RX. »(X; R)](V) iff ¥ is in the least-fixed point defined by ¢:
* Ro = 0.
« Ry =RoU{ac AR | A = o(a; 0)}.
« Ry =RiU{a@ e AR | 9 |= p(a; Ry)}.

* Rax = Rfix41.
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Inflationary fixed-point logic

Theorem
For every sentence 1 € IFP, its model-checking problem MCy, is in PTIME.

The evaluation of [ifp Rx. ¢(x; R)](y) in 2 takes at most |A|" steps, where r is the arity of R.
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Examples of fixed-point computations

Reachability:

Input: A directed graph G = (V,E, s, t).
Question: Is there a path from s to t?

¢ = [ifp Rx. (x=sV3Iy(Ry AEyx)) ](t).

e “Add to R each vertex x that is s or has a predecessor in R”

Fixed-point computation:

OO Ra=0

* Ry = {S}

6 * Ry ={s,v,w}.

* Ry ={s,v,w,t}.
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Examples of fixed-point computations

Input: A 2-player game graph G = (V, Vo, V4, E).
Question: Compute the set of winning positions for Player o.

o(x) = [ifpRx. (Vo x A y(Exy ARY)) V (V4 x AVY(Exy — RY)).) ](X).

“A vertex in Vg is winning if it has a winning successor.
/ A vertex in V4 is winning if all its successors are winning.”
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Does IFP capture PTIME?

Theorem (Immerman-Vardi, 1986 & 1982)
IFP captures PTIME on the class of all linearly ordered finite structures.

Theorem

IFP fails to capture PTIME on the class of all finite structures.
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Proof of the Imnmerman-Vardi Theorem

Theorem (Immerman-Vardi, 1986 & 1982)
IFP captures PTIME on the class of all linearly ordered finite structures.

Translate any polynomial-time TM M into an IFP-sentence, similar to Fagin's theorem:
« Use the order to define a string encoding of the input structure.

+ Since M uses only polynomial time and space, there is a k € N such that a k-ary
fixed-point relation can be used to simulate the run of M.
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Proving inexpressibility results for IFP

Theorem
IFP fails to capture PTIME on the class of all finite structures.

Proof structure:

1. Embed IFP into infinitary FO.

2. Define a pebble game that characterises indistinguishability in infinitary FO.

3. Use this to show that IFP cannot define whether a finite structure has EVEN size (which is
clearly in PTIME).
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Infinitary first-order logic

For k € N, denote by £*  the k-variable fragment of infinitary FO.
It extends k-variable FO with the following formula formation rules:

- If & is an (infinite) set of £ -formulas, then \/ ¢ is an £k -formula.
« If & is an (infinite) set of £k _-formulas, then A ® is an £k -formula.

w kR
£oou.z - U Eoow‘
ReN
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Embedding IFP into infinitary FO

Theorem

For every sentence v € IFP there exists a k € N and a ¢ € LR such that v and ¢ are equivalent on
all finite structures.

Let k be the number of variables in ¢ € IFP.

- For any finite structure, we have 2 = [ifp Rx. ¢(X; R)](a) iff there exists n € N such that
a € R", which is the n-th iteration stage.

+ For each n € N, there is a formula ¢"(x) that defines R" in every finite structure.
- [ifp RR. o(X; R)](@) = Ve 2"(0).
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The k-pebble game for £

Definition
Let 2, B two structures, R € N the number of pebbles.
The position after any round is (a € A%, b € BY) with ¢ < k. In each round,

« Spoiler either removes a pebble-pair (a;, b;) that is currently on the board, or places an
unused pebble on A or B.

+ Duplicator: If Spoiler has placed a pebble, then Duplicator places the corresponding pebble on
the other structure.

« If @ — b does not define a local isomorphism 2[a] — B[b], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem

Duplicator has a winning strategy in the k-pebble game on (2(,B) if and only if 2 and 28 agree on
all sentences of L.
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Separating IFP from PTIME

Theorem
IFP cannot express the EVEN-query and hence does not capture PTIME.

+ Suppose for a contradiction that there is a sentence ¢ € IFP that expresses whether a
finite structure has even cardinality.

There is a k € N and an equivalent sentence ¢ € £k .

Duplicator wins the k-pebble game on the structures ({1,...,R},{1,..., R+ 1}) with
empty vocabulary.

Thus, they are not distinguished by ¢ and hence not by . But one of them is odd, the
other even.
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Via model-comparison games, we have shown:
FO < IFP < PTIME.

Alternative argument: 0-1 Laws.
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Definition
A logic £ is said to have a o-1-law if for every relational vocabulary 7, and every sentence ¢ € L[7],

Jlim Py = ) € {0,1},

where P(2l, = ¢) denotes the probability that an n-element 7-structure whose relations are
chosen uniformly at random satisfies .

Theorem (Kolaitis, Vardi, 1992)
The logic LY, has a 0-1 law.

—> EVEN is not definable in £%, , and hence not in IFP.
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Constraint Satisfaction Problems




Fixed-point Logic and Constraint Satisfaction Problems

Let B be a finite relational 7-structure, called template. Then CSP(B) is the following problem.

Input: A finite 7-structure 2.
Question: Is there a homomorphism h: 20 — B?

A homomorphism is a map h such that whenever a € R¥, then h(a) € R”.
Examples:

- Systems of linear equations over finite fields
+ Graph k-colourability

« Boolean satisfiability
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Fixed-point Logic and Constraint Satisfaction Problems

Example: A graph G is 3-colourable if and only if it admits a homomorphism into K.

hZG—>K3? R
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Fixed-point Logic and Constraint Satisfaction Problems

Theorem (Bulatov-Zhuk, 2017)
Let 9B be a finite relational structure. Then CSP(%8) is either in PTIME or NP-complete.

Theorem (Barto-Kozik and Atserias-Bulatov-Dawar)

Let B be a finite relational structure. Then CSP(8) is solvable in IFP if and only if it is solvable by
the kR-consistency algorithm, for a constant k € N.

Note: There are CSPs in PTIME which are not in IFP.
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The local consistency method

k-consistency for CSP(B):

1: Input: An instance 2.

2: Output: Is there a homomorphism 20 — B? (answer can be wrong)

3: For every X C A with |A| < k, initialise H(X) := {h: A[X] — B | h a homomorphism}.

4 while H keeps changing do

5: For every X C Y, if there is a h € H(X) that does not extend to a h’ € #(Y), remove h from
H(X).

6: For every X C Y, if there is a h € H(Y) such that h|x ¢ H(X), remove h from H(Y).

7: end while

8: If there is an X such that #(X) = 0, return UNSAT.

o: Else, return SAT.
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The local consistency method

Theorem
For every template B and every k € N, there is a sentence 1y, o5 € IFP such that for all instances 2,

A = Yy <= Rk-consistency accepts .

Remark: 1, »; can be taken to be in the existential fragment of IFP, also called DATALOG.
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Fixed-point logic with counting




Recall: IFP cannot define whether a structure has even cardinality.

Solution: Add a counting mechanism to the logic.
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Definition of FPC

Fixed-point logic with counting (FPC) is the extension of IFP with counting terms.
For a finite structure 21, let 2A* denote the 2-sorted structure

A =AW ({0,...,]Al}; <,0,e),
where e is a constant with e = |A|. FPC[r]-formulas use:

* a 2-sorted vocabulary 7w {<, 0, e},
- 2-sorted variables x,y,z...,and \, u,v, . ...
- counting terms: If ¢(x) is a formula, then #4[¢] is a term in the numerical sort.

Semantics: [#,[0]]* =t € {0,...,|A|},wheret = |{ac A | A = p(a)}|.
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Examples for expressivity of counting terms

Regularity of undirected graphs can be expressed (i.e. every node has the same degree):

VXY (#:[EXZ] = #:[Eyz]).

Isomorphism of equivalence relations Eq, E;:

Vul#tx#y[Exy] = p] = #x[#y[E2xy] = p)-

“For every equivalence-class-size p, equally many elements are in a class of size x in E; and
in Ez."
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Complexity hierarchy

FPC can express EVEN shown later
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The power of FPC

 FPC can solve linear-algebraic problems over Q

« FPC can solve the optimization problem for linear programs over Q

+ Consequence: FPC can define the size of a maximum matching in a graph.

 FPC captures PTIME on any proper minor-closed graph class
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Definable Canonization

Definition

A canonization for a class K of structures is a function f that maps 2( € K to an ordered copy
f(2) = (2, <) such that for all 2,8 € K,

() =f(B) — Ax=B.
If f can be realized by an £-interpretation, for a logic £, then the canonization is £-definable.

Theorem

If L is a logic at least as strong as IFP, then if a class K of structures admits L-definable
canonization, £ captures PTIME on K.
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Canonization in FPC

In FPC, structures come with a linearly ordered number sort, in which we may define the canon.
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Canonization in FPC

Example: Canonizing directed trees in FPC.

* Input: A 2-sorted tree 7* = (V,E) W ({0,...,|V|},<,0,e).
- Use the fixed-point operator to define a ternary relation F C V x {1,...,|V|}? such that for

everyv eV, F, .= {(i,j) | (v,i,j) € F} is the edge relation of an ordered copy of the subtree 7,
rooted at v.

+ Inductive step: Compute F, assuming Fy,, ..., Fy, have been computed for the children of v.
« It suffices to define an order on {wy, ..., wn}.

* Fy, is an ordered copy of the subtree 7y, so code(7y,, <) € {0,1}* can be computed, and
{wa,...,wmn} can be ordered according to code(7y,, <) € {0,1}*.
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Infinitary Counting Logic

Just as IFP can be seen as a fragment of £% , FPC is a fragment of C .

ocow?

For every k € N, CR _ is the extension of £f_ with counting quantifiers 32™x for all m € N.

Theorem (Gradel and Otto, 1993)

For every sentence v € FPC, there exists ak € N and a ¢ € Ck _ such that + and ¢ are equivalent
on all finite structures.
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Graph Isomorphism




The Graph Isomorphism Problem

Graph Isomorphism:

Input: Two graphs G, H.
Question: Are G and H isomorphic?

—o
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FPC corresponds to Weisfeiler-Leman

Theorem
Let K be a class of graphs. Then the following are equivalent.

1. The isomorphism problem for graphs in K can be solved in FPC.
2. There is a k € N such that for all non-isomorphic G,H € K, G #« H.

3. The (kR — 1)-dimensional Weisfeiler-Leman algorithm solves the isomorphism problem for
graphs in K.
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The Weisfeiler-Leman algorithm

1-dimensional Weisfeiler-Leman:
1. Input: A graph G.
Output: A colouring of the vertices according to C2-types.
Initialise every vertex v € V(G) with the same colour c(v).
while colouring keeps changing do
Foreachv e V,setc(v) = {{c(w) |w € E(v)}}.
end while

® O O O ®
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The Weisfeiler-Leman algorithm

- Generally, k-dimensional Weisfeiler-Leman computes a colouring of the k-tuples in a graph G
according to their C**'-types in G.

« We say that k-WL distinguishes G and H if the computed colourings are different.

« Intuitively, every FPC-sentence can at most distinguish all graphs that can also be
distinguished by k-WL for some fixed k € N.
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On ordered structures:
* |IFP captures PTIME.

« Deterministic transitive closure

o ) logic captures LOGSPACE.
~ Weisfeiler-Leman algorithm g P

for Graph Isomorphism
~ k-consistency algorithm for CSP NL.

« Transitive closure logic captures

@
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