
Fixed-point logics

Benedikt Pago 1

ESSLLI 2025, Bochum
1University of Cambridge



L

P

L

FO

P

NP = ∃SO

Benedikt Pago (University of Cambridge) 2



Shortcoming of first-order logic

First-order logic is local:

Theorem
There is no FO-sentence that expresses whether a graph is connected.

Solution: Extend FO with an iteration mechanism.
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Inflationary fixed-point logic

Fixed-point logic (IFP) extends the syntax of FO with the following operator:

[ifp Rx̄. ϕ(x̄;R)](ȳ).

It holds A |= [ifp Rx̄. ϕ(x̄;R)](ȳ) iff ȳ is in the least-fixed point defined by ϕ:
• R0 = ∅.
• R1 = R0 ∪ {ā ∈ Aar(R) | A |= ϕ(ā; ∅)}.
• R2 = R1 ∪ {ā ∈ Aar(R) | A |= ϕ(ā;R1)}.
• ...
• Rfix = Rfix+1.
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Inflationary fixed-point logic

Theorem
For every sentence ψ ∈ IFP, its model-checking problemMCψ is in Ptime.

Proof.

The evaluation of [ifp Rx. ϕ(x;R)](y) in A takes at most |A|r steps, where r is the arity of R.
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Examples of fixed-point computations

Reachability:

Input: A directed graph G = (V, E, s, t).
Question: Is there a path from s to t?

ss

v wv w

tt

ϕ := [ifp Rx. (x = s ∨ ∃y(Ry ∧ E yx))︸ ︷︷ ︸
“Add to R each vertex x that is s or has a predecessor in R”

](t).

Fixed-point computation:
• R0 = ∅.
• R1 = {s}.
• R2 = {s, v,w}.
• R3 = {s, v,w, t}.
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Examples of fixed-point computations

Game:

Input: A 2-player game graph G = (V, V0, V1, E).
Question: Compute the set of winning positions for Player 0.

00

011

1 11 1

ϕ(x) := [ifpRx. (V0 x ∧ ∃y(Exy ∧ R y)) ∨ (V1 x ∧ ∀y(Exy → R y)).)︸ ︷︷ ︸
“A vertex in V0 is winning if it has a winning successor.
A vertex in V1 is winning if all its successors are winning.”

](x).
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Does IFP capture Ptime?

Theorem (Immerman-Vardi, 1986 & 1982)
IFP captures Ptime on the class of all linearly ordered finite structures.

Theorem
IFP fails to capture Ptime on the class of all finite structures.
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Proof of the Immerman-Vardi Theorem

Theorem (Immerman-Vardi, 1986 & 1982)
IFP captures Ptime on the class of all linearly ordered finite structures.

Proof.

Translate any polynomial-time TM M into an IFP-sentence, similar to Fagin’s theorem:
• Use the order to define a string encoding of the input structure.
• Since M uses only polynomial time and space, there is a k ∈ N such that a k-ary
fixed-point relation can be used to simulate the run of M.
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Proving inexpressibility results for IFP

Theorem
IFP fails to capture Ptime on the class of all finite structures.

Proof structure:

1. Embed IFP into infinitary FO.
2. Define a pebble game that characterises indistinguishability in infinitary FO.
3. Use this to show that IFP cannot define whether a finite structure has Even size (which is
clearly in Ptime).
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Infinitary first-order logic

For k ∈ N, denote by Lk∞ω the k-variable fragment of infinitary FO.
It extends k-variable FO with the following formula formation rules:

• If Φ is an (infinite) set of Lk∞ω-formulas, then
∨

Φ is an Lk∞ω-formula.
• If Φ is an (infinite) set of Lk∞ω-formulas, then

∧
Φ is an Lk∞ω-formula.

Lω∞ω =
⋃
k∈N

Lk∞ω.
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Embedding IFP into infinitary FO

Theorem
For every sentence ψ ∈ IFP there exists a k ∈ N and a ϕ ∈ Lk∞ω such that ψ and ϕ are equivalent on
all finite structures.

Proof.

Let k be the number of variables in ψ ∈ IFP.
• For any finite structure, we have A |= [ifp Rx̄. ϕ(x̄;R)](ā) iff there exists n ∈ N such that
ā ∈ Rn, which is the n-th iteration stage.

• For each n ∈ N, there is a formula ϕn(x̄) that defines Rn in every finite structure.
• [ifp Rx̄. ϕ(x̄;R)](ā) ≡

∨
n∈N ϕ

n(ā).
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The k-pebble game for Lk
∞ω

Definition
Let A,B two structures, k ∈ N the number of pebbles.
The position after any round is (ā ∈ A`, b̄ ∈ B`) with ` ≤ k. In each round,

• Spoiler either removes a pebble-pair (ai,bi) that is currently on the board, or places an
unused pebble on A or B.

• Duplicator: If Spoiler has placed a pebble, then Duplicator places the corresponding pebble on
the other structure.

• If ā→ b̄ does not define a local isomorphism A[ā] → B[b̄], then Spoiler wins.

Duplicator wins if the play continues forever without Spoiler winning.

Theorem
Duplicator has a winning strategy in the k-pebble game on (A,B) if and only if A andB agree on
all sentences of Lk∞ω.
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Separating IFP from Ptime

Theorem
IFP cannot express the Even-query and hence does not capture Ptime.

Proof.

• Suppose for a contradiction that there is a sentence ψ ∈ IFP that expresses whether a
finite structure has even cardinality.

• There is a k ∈ N and an equivalent sentence ϕ ∈ Lk∞ω.
• Duplicator wins the k-pebble game on the structures ({1, . . . , k}, {1, . . . , k+ 1}) with
empty vocabulary.

• Thus, they are not distinguished by ϕ and hence not by ψ. But one of them is odd, the
other even.
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Summary

Via model-comparison games, we have shown:

FO � IFP � Ptime.

Alternative argument: 0-1 Laws.
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0-1 Laws

Definition
A logic L is said to have a 0-1-law if for every relational vocabulary τ , and every sentence ψ ∈ L[τ ],

lim
n→∞

P(An |= ψ) ∈ {0, 1},

where P(An |= ψ) denotes the probability that an n-element τ-structure whose relations are
chosen uniformly at random satisfies ψ.

Theorem (Kolaitis, Vardi, 1992)
The logic Lω∞ω has a 0-1 law.

=⇒ Even is not definable in Lω∞ω and hence not in IFP.
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Constraint Satisfaction Problems



Fixed-point Logic and Constraint Satisfaction Problems

LetB be a finite relational τ-structure, called template. Then CSP(B) is the following problem.

CSP(B):

Input: A finite τ-structure A.
Question: Is there a homomorphism h : A → B?

A homomorphism is a map h such that whenever ā ∈ RA, then h(ā) ∈ RB.
Examples:

• Systems of linear equations over finite fields
• Graph k-colourability
• Boolean satisfiability
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Fixed-point Logic and Constraint Satisfaction Problems

Example: A graph G is 3-colourable if and only if it admits a homomorphism into K3.

h : G→ K3?
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Fixed-point Logic and Constraint Satisfaction Problems

Theorem (Bulatov-Zhuk, 2017)
LetB be a finite relational structure. Then CSP(B) is either in Ptime or NP-complete.

Theorem (Barto-Kozik and Atserias-Bulatov-Dawar)
LetB be a finite relational structure. Then CSP(B) is solvable in IFP if and only if it is solvable by
the k-consistency algorithm, for a constant k ∈ N.

Note: There are CSPs in Ptime which are not in IFP.
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The local consistency method

k-consistency for CSP(B):
1: Input: An instance A.
2: Output: Is there a homomorphism A → B? (answer can be wrong)
3: For every X ⊆ A with |A| ≤ k, initialise H(X) := {h : A[X] → B | h a homomorphism}.
4: while H keeps changing do
5: For every X ⊂ Y , if there is a h ∈ H(X) that does not extend to a h′ ∈ H(Y), remove h from

H(X).
6: For every X ⊂ Y , if there is a h ∈ H(Y) such that h|X /∈ H(X), remove h from H(Y).
7: end while
8: If there is an X such that H(X) = ∅, return UNSAT.
9: Else, return SAT.
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The local consistency method

Theorem
For every templateB and every k ∈ N, there is a sentence ψk,B ∈ IFP such that for all instances A,

A |= ψk,B ⇐⇒ k-consistency accepts A.

Remark: ψk,B can be taken to be in the existential fragment of IFP, also called Datalog.
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Fixed-point logic with counting



Recall: IFP cannot define whether a structure has even cardinality.

Solution: Add a counting mechanism to the logic.
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Definition of FPC

Fixed-point logic with counting (FPC) is the extension of IFP with counting terms.

For a finite structure A, let A∗ denote the 2-sorted structure

A∗ := A ] ({0, . . . , |A|};<,0, e),

where e is a constant with e = |A|. FPC[τ ]-formulas use:

• a 2-sorted vocabulary τ ] {<,0, e},
• 2-sorted variables x, y, z . . . , and λ, µ, ν, . . . .
• counting terms: If ϕ(x) is a formula, then #x[ϕ] is a term in the numerical sort.

Semantics: J#x[ϕ]KA = t ∈ {0, . . . , |A|}, where t = |{a ∈ A | A |= ϕ(a)}|.
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Examples for expressivity of counting terms

Example

Regularity of undirected graphs can be expressed (i.e. every node has the same degree):

∀x∀y(#z[Exz] = #z[Eyz]).

Example

Isomorphism of equivalence relations E1, E2:

∀µ(#x[#y[E1xy] = µ] = #x[#y[E2xy] = µ]).

“For every equivalence-class-size µ, equally many elements are in a class of size µ in E1 and
in E2.”
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Complexity hierarchy

FO � IFP � FPC � Ptime.

FPC can express Even shown later
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The power of FPC

• FPC can solve linear-algebraic problems over Q [Holm, 2010].
• FPC can solve the optimization problem for linear programs over Q
[Anderson, Dawar, Holm, 2013].

• Consequence: FPC can define the size of a maximum matching in a graph.
• FPC captures Ptime on any proper minor-closed graph class [Grohe, 2014].
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Definable Canonization

Definition
A canonization for a class K of structures is a function f that maps A ∈ K to an ordered copy
f (A) = (A, <) such that for all A,B ∈ K,

f (A) = f (B) ⇐⇒ A ∼= B.

If f can be realized by an L-interpretation, for a logic L, then the canonization is L-definable.

Theorem
If L is a logic at least as strong as IFP, then if a class K of structures admits L-definable
canonization, L captures Ptime on K.
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Canonization in FPC

In FPC, structures come with a linearly ordered number sort, in which we may define the canon.

] 0 1 2 0 1 2
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Canonization in FPC

Example: Canonizing directed trees in FPC.

• Input: A 2-sorted tree T ∗ = (V, E) ] ({0, . . . , |V|}, <,0, e).
• Use the fixed-point operator to define a ternary relation F ⊆ V × {1, . . . , |V|}2 such that for
every v ∈ V , Fv := {(i, j) | (v, i, j) ∈ F} is the edge relation of an ordered copy of the subtree Tv
rooted at v.

• Inductive step: Compute Fv assuming Fw1 , . . . , Fwm have been computed for the children of v.
• It suffices to define an order on {w1, . . . ,wm}.
• Fwi is an ordered copy of the subtree Twi , so code(Twi , <) ∈ {0, 1}∗ can be computed, and
{w1, . . . ,wm} can be ordered according to code(Twi , <) ∈ {0, 1}∗ .
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Infinitary Counting Logic

Just as IFP can be seen as a fragment of Lω∞ω, FPC is a fragment of Cω∞ω.

For every k ∈ N, Ck∞ω is the extension of Lk∞ω with counting quantifiers ∃≥mx for all m ∈ N.

Theorem (Grädel and Otto, 1993)
For every sentence ψ ∈ FPC, there exists a k ∈ N and a ϕ ∈ Ck∞ω such that ψ and ϕ are equivalent
on all finite structures.
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Graph Isomorphism



The Graph Isomorphism Problem

Graph Isomorphism:

Input: Two graphs G,H.
Question: Are G and H isomorphic?
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FPC corresponds to Weisfeiler-Leman

Theorem
Let K be a class of graphs. Then the following are equivalent.

1. The isomorphism problem for graphs in K can be solved in FPC.
2. There is a k ∈ N such that for all non-isomorphic G,H ∈ K, G 6≡Ck H.
3. The (k− 1)-dimensional Weisfeiler-Leman algorithm solves the isomorphism problem for
graphs in K.
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The Weisfeiler-Leman algorithm

1-dimensional Weisfeiler-Leman:
1: Input: A graph G.
2: Output: A colouring of the vertices according to C2-types.
3: Initialise every vertex v ∈ V(G) with the same colour c(v).
4: while colouring keeps changing do
5: For each v ∈ V , set c(v) := {{c(w) | w ∈ E(v)}}.
6: end while
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The Weisfeiler-Leman algorithm

• Generally, k-dimensional Weisfeiler-Leman computes a colouring of the k-tuples in a graph G
according to their Ck+1-types in G.

• We say that k-WL distinguishes G and H if the computed colourings are different.
• Intuitively, every FPC-sentence can at most distinguish all graphs that can also be
distinguished by k-WL for some fixed k ∈ N.
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Summary

FO

P

FPC

IFP

NP = ∃SO

≈ Weisfeiler-Leman algorithm
for Graph Isomorphism

≈ k-consistency algorithm for CSP

On ordered structures:
• IFP captures Ptime.
• Deterministic transitive closure
logic captures Logspace.

• Transitive closure logic captures
Nl.
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