

Symmetric Proofs in the Ideal Proof System

Anuj Dawar ², Erich Grädel ¹, Leon Kullmann ¹, **Benedikt Pago** ²

12.08.2025

¹RWTH Aachen University

²University of Cambridge

Definition (Grochow, Pitassi; 2018)

An **IPS certificate** of unsatisfiability of $\mathcal{F} = \{f_1(\vec{x}), \dots, f_m(\vec{x})\} \subseteq \mathbb{F}[X]$ is a polynomial $C(\vec{x}, y_1, \dots, y_m)$ such that:

1. $C(\vec{x}, \vec{0}) = 0$.
2. $C(\vec{x}, \vec{f}) = 1$.

An **IPS refutation** of \mathcal{F} is an *algebraic circuit* that represents $C(\vec{x}, \vec{y})$.

The *size* of a refutation is the number of gates in the circuit.

A certificate $C(\vec{x}, \vec{y})$ is *linear* if it is linear in the \vec{y} -variables.

Novelty: We restrict to **symmetric circuits**.

Why symmetry?

1. **Symmetric computation models** (*logics*) are well-studied in finite model theory and have known connections to proof systems like bounded-width resolution, bounded-degree PC [Grädel, Grohe, Pakusa, P. 2019].
2. **Lower bounds** for symmetric algebraic circuits are known: The determinant and *permanent* have an *exponential* complexity gap for symmetric circuits [Dawar, Wilsenach 2020].

Definition

- Let $\mathcal{F} \subseteq \mathbb{F}[X]$ be a set of polynomials.
- Let $\Gamma \leq \mathbf{Sym}(X)$ be a permutation group acting on X .
- Then \mathcal{F} is **Γ -invariant** if for every $\pi \in \Gamma$, $\pi(\mathcal{F}) = \mathcal{F}$.

Example:

$$\text{perm}_n = \sum_{\pi \in \mathbf{Sym}_n} \prod_{i \in [n]} x_{i\pi(i)}$$

is invariant under the action of $(\mathbf{Sym}_n \times \mathbf{Sym}_n)$ on $\{x_{ij} \mid i, j \in [n]\}$, where $(\pi, \sigma)(x_{ij}) = x_{\pi(i)\sigma(j)}$.

Problem

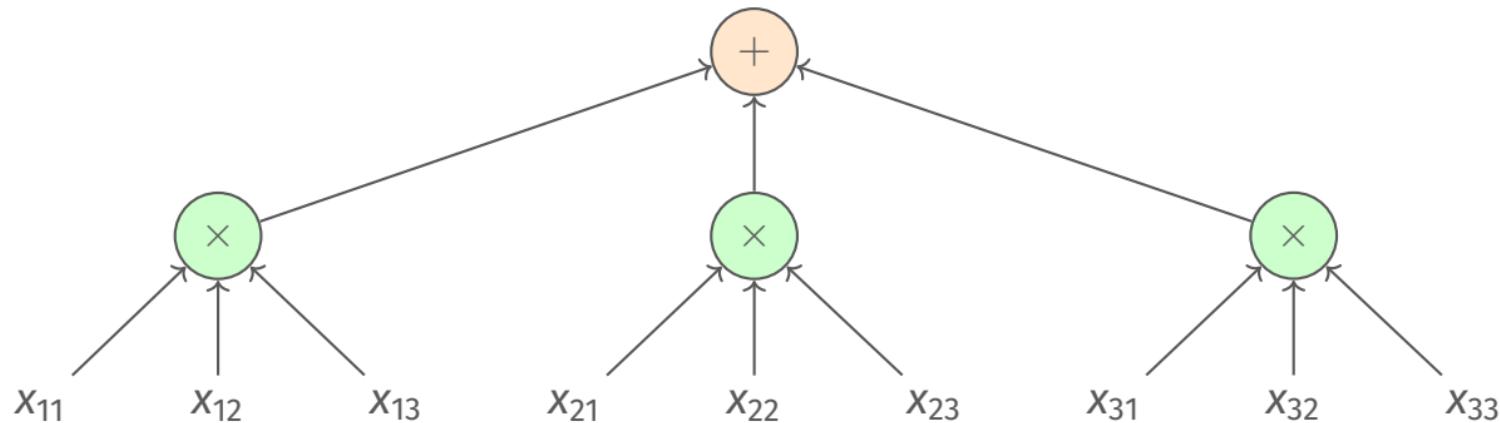
Input: A pair (\mathcal{F}, Γ) where $\mathcal{F} \subseteq \mathbb{F}[X]$ and $\Gamma \leq \mathbf{Sym}(X)$ is a group under which \mathcal{F} is invariant.

Question: Is there a common zero of all polynomials in \mathcal{F} ?

A **sym-IPS refutation** of (\mathcal{F}, Γ) is a **Γ -symmetric algebraic circuit** that represents a certificate $C(\vec{x}, \vec{y})$ of unsatisfiability of \mathcal{F} .

Symmetric algebraic circuits

- Let X be a set of variables.
- Let Γ be a group acting on X .
- An algebraic circuit C over X is **Γ -symmetric** if the action on X extends to **automorphisms** of C .



Theorem

Sym-IPS is a complete proof system on all instances (\mathcal{F}, Γ) .

Linear sym-IPS is **incomplete** over finite fields (if $|\Gamma|$ and the field characteristic are not coprime).

Overview of results

1. Connections with **symmetric computation models** from finite model theory.
2. **Upper bounds** on typical benchmark instances.
3. (Work in progress: Lower bounds).

Theorem

Let $G \not\cong H$, $k \in \mathbb{N}$.

- G and H **k -WL-distinguishable** \Rightarrow “ $G \cong H$ ” has a poly-size \deg_k sym-IPS refutation.
- G and H **CPT-distinguishable** \Rightarrow “ $G \cong H$ ” has a poly-size linear sym-IPS refutation.

k -WL: k -dimensional Weisfeiler Leman algorithm

CPT: Choiceless Polynomial Time, a logic/symmetric computation model that distinguishes strictly more graphs than any fixed k -WL.

Summary of upper bounds

Proof System	Graph non-isomorphism	CFI	Subset sum	Pigeonhole principle
\deg_k -sym-IPS	$\mathcal{O}(n^c)$ if k -WL-distinguishable	none	none	none
sym-IPS _{LIN}	$\mathcal{O}(n^c)$ if CPT-distinguishable	$\mathcal{O}(2^n)$	$\mathcal{O}(n^c)$	$\mathcal{O}(3^n \cdot n)$ $\mathcal{O}(n^c)$
sym-IPS	$\mathcal{O}(n^c)$ if CPT-distinguishable	$\mathcal{O}(n^c)$	$\mathcal{O}(n^c)$	$\mathcal{O}(3^n \cdot n)$ $\mathcal{O}(n^c)$

CFI: System of linear equations over \mathbb{F}_2 related to isomorphism of *Cai-Fürer-Immerman* graphs.

Cai-Fürer-Immerman equations: A possible lower bound example?

Fix a connected 3-regular graph $G = (V, E)$ and some distinguished vertex $\tilde{v} \in V$.

Variables: $\{x_i^e \mid e \in E, i \in \mathbb{F}_2\}$. The following is unsatisfiable in \mathbb{F}_2 .

Cai-Fürer-Immerman

$$x_i^e + x_j^f + x_k^g = i + j + k \quad \text{for each } v \in V \setminus \{\tilde{v}\}, E(v) = \{e, f, g\}, i, j, k \in \mathbb{F}_2.$$

$$x_i^e + x_j^f + x_k^g = i + j + k + 1 \quad \text{for } \tilde{v}, E(\tilde{v}) = \{e, f, g\}, i, j, k \in \mathbb{F}_2.$$

$$x_0^e + x_1^e = 1 \quad \text{for all } e \in E$$

Boolean axioms

Symmetries: Group generated by certain “edge flips” $x_0^e \leftrightarrow x_1^e$.

- **Goal:** Super-polynomial lower bounds for symmetric (linear) IPS.
- **First step:** Consider fragments like symmetric **multilinear formula**/**constant depth** IPS.
- Combination of the *functional lower bound method* [Forbes, Shpilka, Tzameret, Wigderson 2021; ...] with symmetry might yield lower bounds for **Boolean CNFs**.
- **Alternative technique:**
For polynomials expressing graph parameters, small symmetric circuits exist if and only if the parameter is a linear combination of *bounded-treewidth homomorphism counts* [Dawar, P., Seppelt 2025].