

Symmetric Algebraic Circuits and Homomorphism Polynomials

Anuj Dawar ¹, **Benedikt Pago** ¹, Tim Seppelt ²

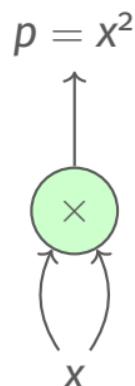
Les Houches, May 2025

¹University of Cambridge

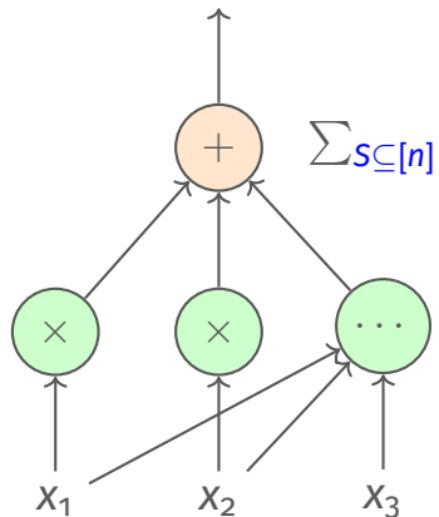
²RWTH Aachen University

Algebraic Circuits

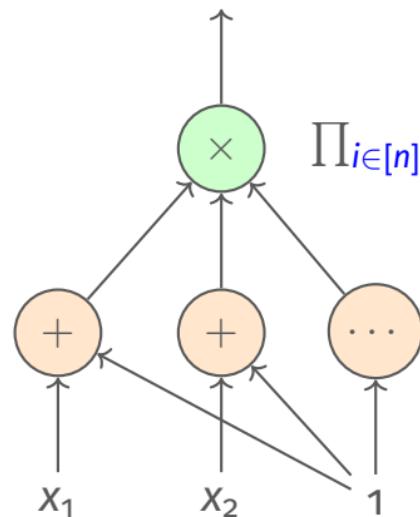
The **complexity** of a polynomial p is the *size* of the smallest *algebraic circuit* representing p .

$$p = x^2$$


$$p = \sum_{S \subseteq [n]} \prod_{i \in S} x_i$$



$$p = \sum_{S \subseteq [n]} \prod_{i \in S} x_i$$



The VP versus VNP question

Determinant

$$\det_n = \sum_{\pi \in \mathbf{Sym}_n} \text{sgn}(\pi) \cdot x_{1\pi(1)} \cdots x_{n\pi(n)}$$

Circuit complexity: $\mathcal{O}(n^4)$.

Permanent

$$\text{perm}_n = \sum_{\pi \in \mathbf{Sym}_n} x_{1\pi(1)} \cdots x_{n\pi(n)}$$

Circuit complexity: ??? (at most $\mathcal{O}(2^n \cdot n^2)$).

“VP = VNP?” is the question “Does $(\text{perm}_n)_{n \in \mathbb{N}}$ admit polynomial-size algebraic circuits?”

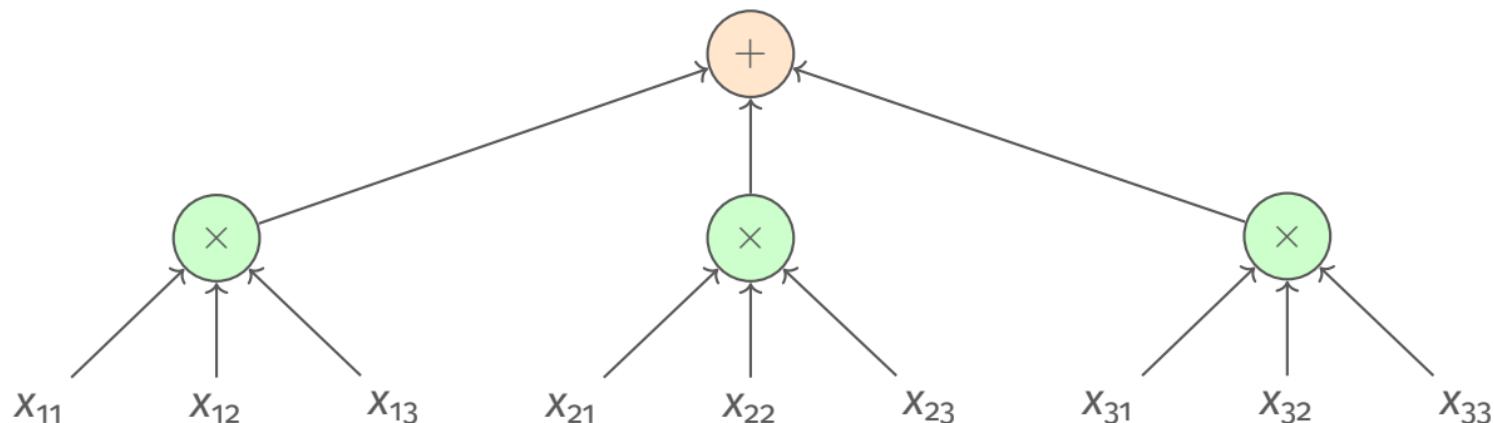
Theorem (Dawar, Wilsenach; 2020)

1. There are polynomial-size **symmetric** circuits for $(\det_n)_{n \in \mathbb{N}}$.
2. There are **no symmetric** circuits for $(\text{perm}_n)_{n \in \mathbb{N}}$ of subexponential size.

In this work: Complete characterisation of polynomials with polynomial-size symmetric circuits.

Symmetric algebraic circuits

- Let $\mathcal{X}_{n,m} := \{x_{ij} \mid i \in [n], j \in [m]\}$.
- $\mathbf{Sym}_n \times \mathbf{Sym}_m$ acts on $\mathcal{X}_{n,m}$: For $(\pi, \sigma) \in \mathbf{Sym}_n \times \mathbf{Sym}_m$, it is $(\pi, \sigma)(x_{ij}) = x_{\pi(i)\sigma(j)}$.
- An algebraic circuit C over $\mathcal{X}_{n,m}$ is $\mathbf{Sym}_n \times \mathbf{Sym}_m$ -symmetric if the action on $\mathcal{X}_{n,m}$ extends to automorphisms of C .



Characterising the symmetric circuit complexity of polynomials

- Every $\mathbf{Sym}_n \times \mathbf{Sym}_m$ -symmetric polynomial $p \in \mathbb{Q}[\mathcal{X}_{n,m}]$ defines a \mathbb{Q} -valued function on *bipartite (n, m) -vertex graphs*.
- **Example:** $\text{perm}_n(G)$ is the number of perfect matchings in a bipartite (n, n) -vertex graph G .

Fact

Every $\mathbf{Sym}_n \times \mathbf{Sym}_m$ -symmetric polynomial can be written as a linear combination of **homomorphism** or **subgraph polynomials**.

Let F be a bipartite graph. For each $n, m \in \mathbb{N}$, the following polynomial evaluated in an (n, m) -vertex graph G counts the number of homomorphisms from F to G .

$$\text{hom}_{F,n,m} := \sum_{h: V(F) \rightarrow [n] \cup [m]} \prod_{ab \in E(F)} x_{h(a)h(b)}.$$

Main result

Let $\mathfrak{T}_{n,m}^k$ be the set of \mathbb{Q} -linear combinations of polynomials $\text{hom}_{F_i,n,m}$ where all F_i have *treewidth at most k* .

Theorem

For every family of polynomials $p_{n,m} \in \mathbb{Q}[\mathcal{X}_{n,m}]$, the following are equivalent:

1. there exists a constant $k \in \mathbb{N}$ such that $p_{n,m} \in \mathfrak{T}_{n,m}^k$ for all $n, m \in \mathbb{N}$,
2. the $p_{n,m}$ admit $\mathbf{Sym}_n \times \mathbf{Sym}_m$ -symmetric circuits of size *orbit size* polynomial in $n + m$.

Theorem (Curticapean, Dell, Marx; 2017)

The problem of computing *linear combinations of induced subgraph counts*, parametrized by their size, is

- in FPT, if it is expressible as a linear combination of *homomorphism counts* from *bounded-treewidth* graphs,
- $\#W[1]$ -hard, otherwise.

Differences to our result:

- Syntactic complexity of polynomials vs computational complexity of the counting functions.
- Our pattern graphs have no fixed size.
- Our lower bound is unconditional.

Theorem

For every family of polynomials $p_{n,m} \in \mathbb{Q}[\mathcal{X}_{n,m}]$, the following are equivalent:

1. there exists a constant $k \in \mathbb{N}$ such that $p_{n,m} \in \mathfrak{T}_{n,m}^k$ for all $n, m \in \mathbb{N}$,
2. the $p_{n,m}$ admit $\mathbf{Sym}_n \times \mathbf{Sym}_m$ -symmetric circuits of orbit size polynomial in $n + m$.

Problem: When is a polynomial (not) in $\mathfrak{T}_{n,m}^k$?

- If $p_{n,m}$ is the *subgraph count polynomial* of a sublinear-size graph $F_{n,m}$, then $p_{n,m}$ is tractable iff $\text{vc}(F_{n,m})$ is bounded by a constant.
- **Conjecture:** In general, $\min\{\text{vc}(F), \text{vc}(\bar{F})\}$ is the criterion for tractability of subgraph polynomials.

Theorem

If $p_{n,m} \in \mathbb{Q}[\mathcal{X}_{n,m}]$ admits poly-size symmetric circuits, then the *counting width* (Weisfeiler-Leman dimension) of the function defined by $p_{n,m}$ on bipartite graphs is *bounded*.

Open question: Is the converse true?

- With respect to symmetric circuits, $\text{VP} \neq \text{VNP}$ (Dawar, Wilsenach; 2020).
- “Symmetric VP” can be characterised as the class of all polynomials expressible via *bounded-treewidth homomorphism counts*.
- In special cases, such as subgraph polynomials, this translates to explicit criteria for super-polynomial lower bounds.
- **Application:** A (conditional) complexity dichotomy for the *immanant* polynomials due to Curticapean (2021) holds unconditionally for symmetric circuits.